Tensor Biclustering

نویسندگان

  • Soheil Feizi
  • Hamid Javadi
  • David Tse
چکیده

Consider a dataset where data is collected on multiple features of multiple individuals over multiple times. This type of data can be represented as a three dimensional individual/feature/time tensor and has become increasingly prominent in various areas of science. The tensor biclustering problem computes a subset of individuals and a subset of features whose signal trajectories over time lie in a low-dimensional subspace, modeling similarity among the signal trajectories while allowing different scalings across different individuals or different features. We study the information-theoretic limit of this problem under a generative model. Moreover, we propose an efficient spectral algorithm to solve the tensor biclustering problem and analyze its achievability bound in an asymptotic regime. Finally, we show the efficiency of our proposed method in several synthetic and real datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AAAI Proceedings Template

The small sample sizes and high dimensionality of gene expression datasets pose significant problems for unsupervised subgroup discovery. While the stability of unidimensional clustering algorithms has been previously addressed, generalizing existing approaches to biclustering has proved extremely difficult. Despite these difficulties, developing a stable biclustering algorithm is essential for...

متن کامل

General Tensor Spectral Co-clustering for Higher-Order Data

Spectral clustering and co-clustering are well-known techniques in data analysis, and recent work has extended spectral clustering to square, symmetric tensors and hypermatrices derived from a network. We develop a new tensor spectral co-clustering method that simultaneously clusters the rows, columns, and slices of a nonnegative three-mode tensor and generalizes to tensors with any number of m...

متن کامل

Dynamic Tensor Clustering

Dynamic tensor data are becoming prevalent in numerous applications. Existing tensor clustering methods either fail to account for the dynamic nature of the data, or are inapplicable to a general-order tensor. Also there is often a gap between statistical guarantee and computational efficiency for existing tensor clustering solutions. In this article, we aim to bridge this gap by proposing a ne...

متن کامل

ar X iv : 0 81 2 . 03 89 v 3 [ cs . D S ] 1 5 M ay 2 00 9 Approximation Algorithms for Bregman Co - clustering and Tensor Clustering

In the past few years powerful generalizations to the Euclidean k-means problem have been made, such as Bregman clustering [7], co-clustering (i.e., simultaneous clustering of rows and columns of an input matrix) [9, 18], and tensor clustering [8, 34]. Like k-means, these more general problems also suffer from the NP-hardness of the associated optimization. Researchers have developed approximat...

متن کامل

1 0 Fe b 20 09 Approximation Algorithms for Bregman Co - clustering and Tensor Clustering ∗

In the past few years powerful generalizations to the Euclidean k-means problem have been made, such as Bregman clustering [7], co-clustering (i.e., simultaneous clustering of rows and columns of an input matrix) [9, 17], and tensor clustering [8, 32]. Like k-means, these more general problems also suffer from the NP-hardness of the associated optimization. Researchers have developed approximat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017